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Abstract

High strain zones may deform by flow with a triclinic symmetry. This paper describes triclinic flow in a reference frame where Instantaneous
Stretching Axes (ISA) are fixed. The operation of triclinic flow is described in two ways: first in terms of flow and the nature of flow eigenvectors
and in the second part of the paper in terms of finite strain. In monoclinic flow, at least one of the eigenvectors of the flow coincides with one of
the ISA and one or two of the eigenvectors act as attractors of foliation or lineation elements. In triclinic flow some flow eigenvectors are un-
defined since the two largest eigenvalues (controlling the flow) are imaginary. Imaginary eigenvalues are particularly common at high kinematic
vorticity and within flow with deviation of the vorticity vector of more than 20° from one of the ISA. Strong deviation from monoclinic flow is
therefore possible, but this will not produce permanent foliations or lineations. For triclinic flow that does produce permanent fabrics, the angle
between ISA and the fabric is so small that it is unlikely that it can be recognised in nature. A discussion of the potential application of such

results within real shear zones is presented.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction
1.1. Fabric attractors in shear zones

In the last 20 years much work has focussed on understand-
ing the influence of flow geometry on the final distribution of
fabrics in deformed rocks. Several previous studies were based
on steady state deformation (Ramsay and Graham, 1970;
Means et al., 1980; Ramberg, 1974; Bobyarchick, 1986; Jiang
and Williams, 1998; Passchier, 1997, 1998) and described the
effect of flow parameters such as vorticity and volume change
on the deformation geometry. Theoretical considerations show
that in a homogeneous steady state progressive deformation,
stable axes exist, controlled by the eigenvectors of the flow
system that can behave as sinks or blocked positions for
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material lines and rigid objects (Fig. la; Ramberg, 1974;
Passchier, 1986; Fossen and Tikoff, 1993). Flow eigenvectors
are axes along which the angular velocity of material lines is
zero in a reference frame of Instantaneous Stretching Axes
(ISA), the orthogonal directions of maximum, minimum and
intermediate stretching rate (Passchier, 1997). ISA are useful
reference axes since they are orthogonal in any flow type. A
maximum number of three eigenvectors can exist in any
flow type, and these rule the motion of material lines in the
flow. Eigenvectors can be three different types of axes: they
can be directions towards which the material points and lines
tend to migrate and where they accumulate (attractor: e in
Fig. 1a); from which they tend to move away (repulsor: f in
Fig. 1a) or which act as ‘“‘saddle” directions where material
lines can move towards the eigenvector in some orientations
and away from it in others. All material lines close to an at-
tractor or repulsor move permanently away or towards this
axis, but for a saddle direction, only the line parallel to the
axis is irrotational; all other lines pass close to the saddle
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Fig. 1. (a) Schematic representation of the attractor, ISA and material lines geometric relationship within a homogeneous plane strain non-coaxial flow. Thin black
line, material lines; Grey lines (e, f), flow eigenvectors of L; Bold lines a, b, ¢, Instantaneous Stretching Axes. (b) Time dependent evolution of the finite strain
ellipsoid in a planar non-coaxial flow. Thin line indicates the time dependent evolution from ¢ =0 to = 100 of the main finite strain axes respect to the attractor.
Grey line — attractor stable direction (red in the web version); (c) stereographic projection of the time dependent evolution of the finite strain ellipsoid in a mono-
clinic flow system. Grey arrows, medium finite strain axes path (blue arrows in the web version); Black arrows, principal finite strain axes path (red arrows in the

web version); w, vorticity vector.

direction on their way from a repulsor to an attractor orienta-
tion. A saddle direction exists if the eigenvalues of flow are all
different. In any flow type, material lines move towards attrac-
tor eigenvectors and this leads to accumulation of foliations
and lineations (Passchier, 1997). In this paper we use the
term attractor in the most accepted definition: a set in a phase
space (or flow pattern) that has a neighbourhood in which ev-
ery point remains nearby and approaches the attractor as time
goes to infinity (Conley and Easton, 1971; Ruelle, 1981).
The orientation of flow eigenvectors with respect to ISA
does not depend on bulk strain rate or volume change, but ex-
clusively on the rotational properties of the flow. The rotation
of all material lines in a flow can balance out, as in pure shear
or other coaxial flow types, or have a bulk “residual” rotation
component in non-coaxial flow types, such as simple shear.
This “residual” component can be expressed by a vorticity
vector that describes the size and direction of the residual rota-
tional component of the system with respect to stationary ISA.

1.2. Triclinic flow

In simple non-coaxial flow types, the vorticity vector is par-
allel to one of the ISA (Fig. 2a, b). This gives the flow pattern
a monoclinic shape symmetry, and such flow types are there-
fore referred to as ‘“monoclinic flow” (Fig. 2c). One of the
flow eigenvectors in such systems lies parallel to one of the
ISA and the vorticity vector, and the other two in a plane

normal to that vector, symmetrically arranged with respect
to the remaining ISA. However, in principle there is no reason
why the vorticity vector could not have a different direction,
oblique to any ISA (Fig. 2d), and such flow types have a tri-
clinic symmetry (Jiang and Williams, 1998). Eigenvectors of
triclinic flow are not parallel to the vorticity vector nor to
ISA and no eigenvectors are orthogonal. Monoclinic flow
can be described by four independent parameters since the
possible variations in geometry are small. Triclinic flow, how-
ever, needs up to six independent parameters to be defined.

Lin et al. (1998), Jones and Holdsworth (1998) and Jiang
and Williams (1998) first drew attention to the possible impor-
tance of triclinic flow for geological deformation. Obviously,
monoclinic flow with strict symmetry and orthogonal eigen-
vectors is an idealised model which may not apply to natural
flow in inhomogeneous materials. The question is, however,
which of the myriad of possible triclinic flow types are rele-
vant for geology. Also, it is not clear if the fabric patterns pro-
duced by such triclinic flow will differ much from those
produced by monoclinic flow.

For a homogeneous, invariable flow history and after a cer-
tain amount of strain accumulation, deformation paths are
strictly controlled by flow eigenvectors. In a simple deforma-
tion system there is usually a relationship between the orienta-
tion of the flow eigenvectors and the finite strain axes (FSA)
orientation (Figs. 1b, ¢ and 2a, b). Development of a fabric
in a planar deformation zone with rigid wall rocks is well
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Fig. 2. Sketch of possible shear zone geometries. (a) Undeformed state. (b) Simple shear zone. (c) Monoclinic shear zone: ISA parallel to the vorticity vector. (d)
Triclinic shear zone: vorticity vector always obliquely with respect to the ISA. The ellipse shows the orientation of finite strain axes (in the web version: yellow
arrows, ISA; green arrows, shear sense; blue ellipses, orientation of finite strain axes).

understood both at the kinematic (Ramsay and Wood, 1973;
Ramsay, 1980; Ramsay and Huber, 1983; Gapais et al., 1987;
Srivastava et al., 1995) and rheological level (Weijermars,
1991; Regenauer-Lieb and Yuen, 2004 and references therein).
In this case, volume constant ductile deformation can only be
accommodated by simple shear (Ramsay, 1980; Fig. 1b).
This kind of shear zone seems to be common in the upper crust
under greenschist to lower amphibolite facies conditions and
possibly in the upper mantle, but may be an oversimplification
elsewhere. At medium to high grade metamorphic conditions
rocks can deform with a progressive deformation history other
than simple shear due to deforming wall rocks and volume
change. In its simplest form, such progressive deformation op-
erates by monoclinic flow and this simple type of shear zone
has been referred to in the literature as a monoclinic shear
zone (Simpson and De Paor, 1993; Jiang and White, 1995;
Passchier, 1997, 1998), a transpressive shear zone (Harland,
1971; Passchier, 1991; Sanderson, 1976; Kligfield and Crespi,
1984; Sanderson and Marchini, 1984; Krantz, 1995; Jones and
Tanner, 1995; Dutton, 1997; Carreras, 2001; Jones et al., 1997,
2004) or stretching and shortening shear zones (Means, 1989;
Passchier, 1986). Triclinic shear zones with triclinic flow
(Lin et al., 1998; Jiang and Williams, 1998) have been investi-
gated by a number of authors (Carreras and Druguet, 1994;
Czeck and Hudleston, 2002; Jones et al., 2004) who described
natural examples at meso- and regional scale. Robin and Cru-
den (1994) have shown numerically that some heterogeneous
shear zones can intrinsically have a triclinic flow geometry.
These studies, however, used a reference frame linked to eigen-
vectors in one monoclinic component of general triclinic flow.
This means that a change in flow parameters changes the orien-
tation of all triclinic flow axes in an external reference frame-
work. Although results of such studies are completely valid and
mathematically correct it is not easy to compare and systemat-
ically investigate triclinic flow types using such reference

systems. In this paper we have therefore taken another ap-
proach. We discuss the characteristics of triclinic flow assum-
ing a homogeneous and steady state flow but using
a reference frame in which some initial triclinic flow axes are
fixed in the external reference frame even if flow parameters
are changed. This makes the comparison between different
states of flow easier. The boundary conditions used mean that
our flow description can be considered as a linear dynamical
system problem. The concept of flow eigenvectors is a property
of dynamic systems and is not restricted to a steady state flow
system (Ruelle, 1981; Tabor, 1989).

2. Flow kinematics
2.1. Reference frame

In a homogeneously deforming body the rate of displace-
ment of particles in a general reference system x can be de-
scribed by the Eulerian rate of displacement equation:

x; = Lygx; ()
where L;; is the general tensor of the strain rate defined as:

L,‘j = aV,'/an (2)

In this study we will discuss steady state flow in which ISA
orientation and stretching rates do not change with time (see
Means et al., 1980; Passchier, 1997). Obviously such steady
state flow will be rare in nature, but the number of possible paths
is large and little is presently known of flow paths in progressive
deformation. We therefore investigate steady state flow as a ref-
erence state for more complex natural systems. This assumption
implies that all velocity coefficients are time-independent and
that the differential equation in (1) represents a general linear
dynamic system where it will be possible to describe and predict
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the velocity pattern completely and by integration of (1) also the
particle path. The strain rate tensor L;; can be decomposed into
a symmetrical rate of deformation tensor D;; and an anti-sym-
metrical vorticity tensor W;; (Malvern, 1969). These two tensors
define the coaxial and the non-coaxial (or rotational) part of
a general flow and are defined as:

2D, =L;+L; (3)

2W; =L — L; (4)

Astarita (1979) and Means et al. (1980) have shown that the
vorticity tensor in a general reference system can be decom-
posed as:

Wi =w; +wj, (5)

where w;; is the internal vorticity component representing the
rotational component of the flow with respect to the ISA,
while wﬁj represents the spin component of the ISA in the
external reference system. This last element is equivalent to
a rotation of the deformed body with respect to the external
reference system, and therefore cannot influence homoge-
neous fabric geometry. Only the internal spin component con-
trols the fabric geometry in a homogeneously deforming body
(Means et al., 1980). Because of the chosen steady state flow
characteristic, the eigenvectors of both L;; and D; matrices
represent invariants of the system, are irrotational in the exter-
nal reference frame and do not change with time. The eigen-
vectors of the D;; matrix are the Instantaneous Stretching
Axes (ISA) of L and these ISA, a, b and ¢ are orthogonal to
each other in steady state flow. ISA are chosen as an internal
reference system for any flow type in this paper, where a, b, ¢
coincide with the x, y, z axes of the external reference system.
This ISA reference frame is useful since depending on mate-
rial properties, ISA can be close in orientation to the bulk
stress directions for a deformation zone (for an isotropic vis-
cous material example, see Weijermars, 1991; Regenauer-
Lieb and Yuen, 2004), or will lie at a fixed angle to the stress
axes if the material properties do not change.

2.2. The general triclinic strain rate matrix

In a reference system fixed to the ISA, the general 3D tri-
clinic strain rate matrix can be built in the following way. In
a simple monoclinic situation the vorticity vector defined by
the tensor W;; is parallel to one of the ISA. If L;;=D;; + W
D;; is defined as:

ij»

a 00
D,=(0 b o0 (6)
0 0 ¢

W;; could also be considered as a vector field curl v, defined
as:

W, =V;xv (7a)

In this matrix, a, b and ¢ are the stretching rate components
(scalar values) of the flow and w is the angular velocity. The
vorticity vector W;; is parallel to ¢ (in the initial monoclinic
flow) in this description. If we want to “triclinize’ the flow
we need to rotate the vorticity vector W;; with respect to
a and b (Fig. 3a) by multiplication of L;; with one or more ro-
tation matrices. We can combine two rotation operations (as
a coordinate transformation) in which the order of composi-
tion is not commutative. If we built a new vorticity vector in
this way to obtain a general triclinic flow, we need to define
three strain rate matrices, which give rise to a rotation by an
angle « around a in the be plane (R(a)); by an angle § around
b (R(b)) in ac plane; and by an angle ¢ around c in ab plane,
respectively (R(c)), thus:

1 0 0

R(a),= | 0 cos(a) sin(a)) (8)
0 —sin(a) cos(a)
cos(8) 0 sin(B) )

Rb),=( o 1 o0 (9)
—sin(B) 0 cos(B)
cos(¢p) sin(¢p) O

R(c);= [ —sin(¢) cos(¢) O (10)

0 0 1

In this reference system, we can choose to build the triclinic
strain rate matrix in two steps:

A first step consists of rotation of the matrix by angle
or o with respect to the ISA reference frame (Fig. 3a). Since
Rfﬁf = R;l, the triclinic strain rate matrices are defined as:

Lj=R(b);-W;-R(b),+D;

ij

L;= R(a),j/'wij'R(a)ﬁ‘FDij
resulting in:
a w(cos()) 0
—w(cos(B8)) b w(sin(B)) (11)
0 —w(sin(B)) c
a —w(sin(a)) —w(cos(a))
w(sin(a)) b 0 (12)
w(cos(a)) 0 c

In these matrices, the vorticity vector is obliquely oriented
with respect to the ISA but still in one of the ISA planes
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Fig. 3. Reference frame for triclinic flow: a, b, ¢, Instantaneous Stretching Axes. w, vorticity vector. e, (3, ¢, rotation angle of the vorticity vector with respect the
ISA. Grey plane represent the sectional vorticity plane. (a) First rotation with respect to b (simple triclinic flow) and second rotation with respect to ¢ (general
triclinic flow). (b) First rotation with respect to a (simple triclinic flow) and second rotation with respect to b (general triclinic flow). (c) Stereographic ISA-
referenced representation of possible vorticity vector positions within simple and general triclinic flow.

(Fig. 3c). We therefore propose to call this flow type simple
triclinic flow. To obtain the most general triclinic flow tensor
we should apply one more rotation (Fig. 3b). Because of the
non-commutative property of the matrix product, a unique ma-
trix is not enough to cover the complete spectrum of flow; we
need two general strain rate matrices to describe all possible
types of triclinic flow. Following the linear transformation
law, the rotation of matrix (7) around first ¢ and then a is de-
fined as:

R(c), xR(a),=U;

with L,‘j = (U,'J' X Wij X U:J) + D,‘j.
The resulting triclinic strain rate matrix L;; is:

a —wcos(a)  —wsin(a)cos(¢)
L;= w cos(a) b —w sin(a)sin(¢)
wsin(a)cos(¢) wsin(a)sin(¢) c

(13)

The field of possible orientation of the new vorticity vector
is in the positive a—b—c quadrants (Fig. 3c). Another possi-
bility to describe general flow (but defining only a half quad-
rant) could be by rotation first around b and then a or the

inverse rotation composition. In this case the new strain rate
tensors are:

a —wcos(a)cos(B) (wsin(B))
L;= | wcos(a)cos(8) b —wcos(a)sin(g)
—wsin(g) wcos(a)sin(B) c
(14)
and
a —wcos(B)cos(a) wcos(B)sin(e)
L;=| wcos(a)cos(f) b —wsin(B)
—wcos(6)sin(a) wsin() c
(15)

Strictly speaking only two angles of rotation are necessary
to obtain a general triclinic flow, and «, (, or ¢, are not
independent.

In order to compare flow types, it is useful to normalize
the magnitude of the vorticity to the stretching rates on the
ISA by defining a kinematic vorticity number. Such a number
can refer to all three ISA or can be given as a sectional vor-
ticity number that refers only to two ISA (Truesdell, 1954;
Ramberg, 1974; Tikoff and Fossen, 1999; Passchier, 1986,
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1997; Jiang and Williams, 1998). In a monoclinic flow the
maximum sectional vorticity number can be defined simply as:

W,=2w/b—a (16)

where w is the magnitude of the vorticity vector that lies par-
allel to the ISA ¢ and a and b are magnitudes of the two other
ISA (Passchier, 1997). This definition can also be used in tri-
clinic flow if the vorticity vector is not parallel to ¢ since this
does not affect the equation. However, if we keep w constant
but change the orientation of the vorticity vector, W,, will be
identical for different flow types. It is therefore advantageous
to use another vorticity number, Wy (d for diagonal) that re-
lates w to the projections of the ISA onto a plane normal to
the vorticity vector W, This diagonal vorticity number defines
the maximum vorticity number of the flow. W, can be defined
as (Fig. 3a, b):

W4 =2w/(bcos(a)cos(¢) —acos(8)) for(13) (17)
W4 =2w/(bcos(a)cos(8) —acos(B)) for(14) (18)
W4 =2w/(acos(a)cos(8) — b cos(a)) for(15) (19)

For simple triclinic flow one of the two angles of ““triclini-
zation” is zero, thereby simplifying the relation. In the case of
monoclinic flow (setting «, (3, ¢ to zero) Wy coincides with W,
defined by Passchier (1997).

Three other normalised flow parameters have been used to
define flow characteristics in monoclinic flow. These are the
dilatancy number A,, the extrusion number T, and the volume
change number V. These are not affected by the vorticity and
can be defined following Passchier (1997) as:

A,=(a+b)/(a—Db) (20a)
T,=c/(a—b) (20b)
and

Va=(a+b+c)/(a—b) (21)

3. Distribution and field of existence of attractors
3.1. Field of existence of flow eigenvectors

Flow eigenvectors are important since all deformation paths
are controlled by them after a certain amount of strain accumu-
lation. It is therefore critical to know how a change in flow pa-
rameters changes the orientation of eigenvectors and thus the
resulting deformation path. (Ramberg, 1974; Passchier, 1997,
1998). As discussed above, eigenvectors are defined as direc-
tions in space in whose orientation material lines and particles
are irrotational. Each real eigenvector has an associated real ei-
genvalue which is a real number that defines the attractor, sad-
dle or repulsor nature of the eigenvector. The most complex
flow type is one with three differently oriented eigenvectors
with different eigenvalues, as for pure shear flow. However,

in the real number domain (or “field of existence’’) the number
of eigenvectors can be reduced in two ways; (1) by “combina-
tion” of two eigenvectors in orientation, as for simple shear
with two eigenvectors; or (2) by “evaporation’ of an eigenvec-
tor into what we call a “ghostvector” where material lines have
minimum or maximum angular velocity but are not irrotational,
as for planar rotational flows with W4 > 1 (McKenzie, 1979;
Weijermars, 1993; Passchier, 1998). Ghostvectors do not
have real, but imaginary eigenvalues. In this type of planar
flow the ““field of existence” of the eigenvalues is totally imag-
inary. Although eigenvectors and ghostvectors may seem to be
entirely different entities, they grade into each other by a simple
change in the nature of eigenvalues from a real to an imaginary
number (Iacopini et al., 2006). Eigenvectors can be recognised
in flow patterns since they are apophyses or asymptotes for hy-
perbolic paths of material line or particle; particles and lines
can approach, but not reach the eigenvector. Ghostvectors are
crossed by particle paths which are elliptic, spiral or star
shaped (Passchier, 1998). In this paper we will demonstrate
that within a 3D flow system a clear distinction into strictly
real and imaginary domains is not always valid.

In an isochoric monoclinic flow with all kinematic vortic-
ity values Wy between O (pure shear) and 1 (simple shear)
eigenvalues are real numbers. However, in the case of vol-
ume change (or with area increase or decrease in the plane
normal to the vorticity vector) eigenvalues can be a mixed
combination of real and imaginary numbers in some flow
types. As a consequence, the irrotational property of a “real”
eigenvector changes into a ghostvector where the velocity
of a line is maximal or minimal but which cannot perma-
nently attract or repulse it. The important consequence is
that no permanent gradually strengthening fabric elements
such as foliations or lineations can be built, although pulsat-
ing strengthening—weakening fabrics are possible. One of the
purposes of this work is to determine under which conditions
the number of eigenvectors is reduced by ‘‘combination”
into a single eigenvector or “‘evaporation’ into a ghostvector
and to establish the extent of the “field of existence™ of real
eigenvalues for different flow parameters in a general tri-
clinic flow.

4. Method

Eigenvalues are defined by the characteristic polynomial of
one of the matrices (13)—(15). For a general matrix defining an
autonomous flow system in 3D space, the polynomial equation
is of the third degree and the roots (i.e. the eigenvalues) are de-
fined by three of the nine solutions typical of a third degree
equation. Without going into details of the algebraic procedure
used to solve this problem (given in Iacopini, 2005) we will de-
scribe the basic analytical constraints (using the flow parame-
ters) that can help to define the real and complex domains of
such a flow system. In addition, we use a simple numerical
method to find the relation between fields of existence of eigen-
values and flow parameters. All calculations were done using
Mathematica 4.1™ (Wolfram Research) and Matlab™ 6.1
(script 1 and 2).
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4.1. Analytical method

Consider the general matrix L;; simplified from Eq. (15):

a p —q
Li={-p b r (22)
g -r ¢

Eigenvalues for a general asymmetrical matrix L;; of di-
mension n =3 in C" space, can be found from the characteris-
tic polynomial:

X=X (TrLy) + A(p* +¢* +r*+ab+ac+bec) —DetL;
(23a)

where A represents the generic eigenvalues, p, ¢, r the off-
diagonal coefficients of the L;; strain rate matrix (the angular
velocity component of L;) and a, b, ¢ the diagonal compo-
nents of the L; matrix (the instantaneous stretching rates of
L;). The term Det refers to the determinant of the matrix,
while Tr represents the trace of the strain rate matrix. If Eq.
(23a) can be solved, the three eigenvalues for the flow are
determined and from them the nature of eigenvectors can be
found. If an eigenvalue is an imaginary number, no real eigen-
vector exists for that eigenvalue, only a “ghostvector”. Eq.
(23a) can be solved as follows.

The algebraic substitutions:

u=p*+q +r*+ab+ac+bc (23b)
k = —Det L,:/' (23(1)
simplify Eq. (23a) to:

A=vdu+k (23e)

Using the further substitutions:

A=y—v/3 (23f)
j=u—v/3 (23g)
h=k+ (uv)/3—2v/27 (23h)
Eq. (23e) is modified to:

Y +yi+h (24)

Third order polynomials of this type can be solved if we put
y=m+n, implying from Eq. (23f) that A=m+n—v/3.
Substituting we obtain:

Y yj+h= (m+n) +jm+n) +h
=m’ +3m*n+ 3’ n+n* +jm+n)+h
= (m’ +n’ +h) + (m+ n)(3mn + ) (25)

Eq. (25) is equivalent to the simplified Eq. (24) and the gen-
eral solutions of this new third degree equation are defined by
the following boundary conditions:

—h=m’+n’ (26a)
and
nm=—j/3 (26b)

Before solving these two equations and in order to simplify
the solution procedure it is necessary to introduce a useful
property: it is demonstrated that if m and n are solutions in
a general second degree equation, the correspondent second
degree equation has the form:

7' — (m+n)z+mn (26¢)

If we rewrite solution (26a) by cubing (26b) we have:

—h=m’+n’ (27a)

mn® = —j°/27. (27b)

Now Egs. (27a) and (27b) have the same form as the roots
of the second degree system (26c) so that as consequence Eq.
(24) is equivalent to:

7P +hZ—j/271=0 (28)

Solving Eq. (28) and using the substitution in (23b)—(23d)
it follows that:

m= (—h/z— (h2/4+j3/27)1/2)]/3 (29a)

n= (—h/2+ (/4 +j3/27)”2)1/3 (29b)

Because of the applied cubing (27b), m and n have to sat-
isfy the relation mn = —j/3 and the solutions are of the type:

A=m+n—v/3. (30)

In order to have an idea of the field of existence of real ei-
genvalues as a function of the velocity w and the stretching
rate a, b, ¢, we have to study the solution defined by Egs.
(23a), (24) and (28) after inserting all substitutions made in
Egs. (23b)—(23h).

In the initial strain rate matrices, Eqgs. (13), (14) and (15),
the strain rate and velocity components have real values so
that all coefficients in our solution in Eq. (30) are real. The
sets of boundary conditions expressed in Egs. (28) and (29)
define nine possible solutions, only three of which will satisfy
both the third degree equation and the boundary conditions
stated in Eqs. (26) and (27).

This relation in its extended form is complicated but their
solutions depend mainly on the quadratic roots of relations
(29a) and (29b) defined by:

A= (W/4+)/27) (31)

We can have the following three situations: 4 >0, 4 =0 or
4 <0.
Below, we will consider each of these situations in turn.

1) 4>0
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If 4> 0, h*/4 > —j°/27 and the three solutions (and the ei-
genvalues of the dynamical system) are two complex numbers
and one real number, inducing an evaporation of two eigen-
vectors. Unlike the two dimensional situation (Ramberg,
1974; McKenzie, 1979; Weijermars, 1993), eigenvalue fields
of existence completely controlled by imaginary eigenvalues
cannot exist in 3D. The real number is the eigenvalue,

A=m—+n— ((TrL,-j)/3)

and the other two are,

—1+iV3 -1-iV/3\ TrL;
pon(TEB) () Tl
and,

—1—i —14i TrL;
pom(T5) () Ty

The main problem is to determine which eigenvalue controls
the accumulation of the fabric at large strain (for — o). In our
3D case for stable fabric development, the real eigenvalue has
to be the one dominating for — oo, implying a long time of
strain accumulation. If complex eigenvalues dominate, they
will influence the fabric development producing pulsating
and closed deformation paths (complete treatment in Iacopini,
2005). Therefore, the following statements are valid if we ob-
serve the deformation path in the plane normal to the vorticity
vector:

If A, =0, particles move in planes, and two situations are
possible. If A, and A3 are purely imaginary the flow pattern
is a set of embedded ellipses giving rise to a pulsating pattern
(Ramberg, 1974; Weijermars, 1993). If A, and A3 also have
a real part then, depending on their sign, particles move in
a stable or a non-stable spiral.

If A; is positive (or negative) we have a 3D flow path and
there can be, three situations:

a) If A, and A; are purely imaginary we have a pulsating
strain with a repelling (or attracting) component parallel
to the vorticity vector (Fig. 4a).

b) If A, and A5 have a real component that is negative, parti-
cles tend to migrate inwards in a stable spiral to an equi-
librium point which is reached after a large amount of
strain with a repulsing (or attracting) component parallel
to the vorticity vector (Fig. 4b).

c¢) If A, and A3 have a real part that is positive, points tend to
migrate outwards in a non-stable spiral towards or away
from an attractor (or repulsor) axis in the third dimension
(Fig. 4c).

In all cases the real eigenvalue has no pulsating “history”
and could induce development of a stable fabric.

2) 4=0
If 4 =0 then according to Egs. (29), (30) and (31):

n=m=(—h/2)" (33)

and the three eigenvalues are all real numbers as follows:

A =2(=h/2)' P +TrL;/3 (34a)
h =2cos(2m/3)(—h/2) P = —(—=h/2) P+TrL;/3  (34b)
s = 2cos(4m/3)(—h/2) P = —(=h/2) P+TrLy /3 (34c)

This implies that we have three solutions, but two of them
are coincident inducing a combination of two eigenvectors. If
the two eigenvalues A, = A3 are negative, we have a deforma-
tion path known as a stable improper node as shown in Fig. 4d
(with a third component parallel to the vorticity axes). If
Ay = A3 are positive we have a stable improper node as shown
in Fig. 4e. A, = A3 = 0 represents simple shear (with ¢, = 0) as
described by Ramberg (1974) and shown in Fig. 4f.

3) 4<0

In this case m and n are two complex conjugate numbers
following the boundary condition given in Eq. (19). This
implies that if 4 < O the solutions for A are all real number
solutions (products or sums of conjugate imaginary number
are always real). The relations are:

A =2Cos(8)(—p/3)"*+TrL;/3 (35a)
d = (=p/3)"*(Cos(6 +27)/3) + TrL;/3 (35b)
A= (—p/3)(Cos(6 +2m)/3)+TrL;/3 (35¢)

with
Tan(6) = — ((=R)*)q/2 (36)

Examples are given in Table la—c. W} is the threshold non-
normalised vorticity number, Wy is the diagonal vorticity num-
ber (following relations (17)—(19)) and Wj is the threshold
maximum vorticity number above which the eigenvalue starts
to be imaginary.

In the case of 4 <0, Wy < W so that all eigenvalues are
permanently positive and define real eigenvectors.

The following types of eigenvalue distributions are
possible:

For A; > 0> A, > A3 a flow pattern (or deformation paths) of
saddle axes is defined, with one attractor corresponding to the
negative eigenvalue and a repulsor associated with the larger
eigenvalue (Fig. 5a).

A1 > A, > 0 > A3 defines a situation of non-volume constant
flow extruding in one direction.

If A, =0, 0> A, > A5 there is a stable attractor (all particles
attracted to the stable eigenvector, Fig. 5b) and if A > 4, >0,
A3=0 and A; > A, > A3 >0 non-stable expanding flow pat-
terns will develop (Fig. 5¢).
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(a) (b)

Embedded ellipsoid

Stable Spiral

Non stable Spiral

(d) (e)

&

unstable improper node

Stable improper node

simple flow

Fig. 4. Schematic representation of some principal flow patterns as seen in the sectional vorticity plane. (a) Closed elliptical pattern; (b) stable spiral; (c) unstable
spiral; (d) unstable improper node pattern; (e) stable improper node pattern; (f) simple flow pattern. Small arrow, flow direction.

5. Triclinic flow and real eigenvector distributions

For simple triclinic flow types with volume change the field
of existence of real eigenvalues depends on the angle of tricli-
nization. Tables 1a—c shows limiting values W} for some sim-
ple triclinic flow examples within the range of possible
deviation of the vorticity vector with respect to one of the
ISA. Fig. 6 shows the limiting value W} for all possible vol-
ume constant and non-constant simple triclinic flows within
a deviation of 0.4 radians. As a general trend it is clear that
both for constant volume (Table la, Fig. 6) and in the case
of volume change (Tables 1b, c¢; Fig. 6) an increased “triclini-
zation” of the flow leads to a smaller real field of existence of
eigenvalues for high vorticity numbers of the flow (compare
a and d in Fig. 6 for each W} value). In volume constant tri-
clinic flow a deviation of 0.3 radians of the vorticity vector
from one of the ISA gives a limiting vorticity number of

0.82. A complete trend of critical vorticity values within a sim-
ple triclinic flow for 0 <A, <1 and 0 < T, <1 is shown in
Fig. 6. These values show that:

a) as general trend with increasing triclinization (« varying
from 0.1 to 0.4) the field of existence of real eigenvalues
tends to become smaller (Fig. 6a to d). At a high vorticity
number the triclinic geometry is controlled by two imagi-
nary eigenvalues;

b) with increasing dilatancy of flow (A, >0 and T,=0),
implying a volume increase, the critical value W} tends
to restrain the “real” field of existence of triclinic flow
(Fig. 6);

¢) with increasing extrusion number T, in the absence of di-
latation, the field of existence of imaginary flow tends to
disappear and real triclinic flow exists up to high vorticity
values (Fig. 6); and

(a) ; (b)

N

3D

X (c)

y 2

' >

N

“
\YF/V

Saddle point

Stable point

non - stable point

Fig. 5. Possible 3D flow patterns for real eigenvalue fields of existence. Views are parallel to the vorticity vector. x,y, general reference frame (close to ISA in
triclinic flow). Bold lines, principal eigenvectors. Thin lines approximate flow paths in the neighbourhood of the eigenvectors. Flow types can have a saddle point

(a), a stable point (b) or a non-stable point (c).
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0.15
0.7 0.9

1 0908070605

(b) =02
0.99

Fig. 6. Graph showing contours for the threshold Wy vorticity number at which imaginary eigenvalues appear at different flow parameters. (a) « = 0.1 radians; (b)
a = 0.2 radians; (c) « = 0.3 radians; (d) « = 0.4 radians. Points in the diagrams correspond to exact calculated values of vorticity numbers W} at different flow
parameters. A,, dilatancy number; T,,, extrusion number. ¢, angle of rotation of the vorticity vector. Grey scale bar-field of existence of different vorticity threshold
values Wj. Colour scale bar-field of existence of different vorticity threshold values W in web.

d) if we mix the effects of the two flow parameters A, and T,
the field of existence tends to be small with respect to the
volume constant example (Fig. 6).

In order to provide a visualisation of what happens to
eigenvectors when flow deviates from monoclinic, i.e. when

Table la

Threshold vorticity numbers defining the imaginary eigenvalue fields of exis-
tence in the case of constant volume (a= —b, 4; > 0> 4, > A3)

aorf wk we Wi
0.1 0.47 0.96 0.94
0.2 0.44 0.88 0.88
0.3 0.41 0.83 0.82
04 0.39 0.81 0.78
0.5 0.36 0.76 0.72
0.6 0.34 0.74 0.68
0.7 0.32 0.72 0.64
0.8 0.30 0.70 0.60
0.9 0.29 0.70 0.58
1.0 0.27 0.71 0.54
1.1 0.26 0.76 0.52
1.2 0.25 0.78 0.50
1.3 0.25 0.86 0.50

W, angular velocity; W, monoclinic vorticity number sensu Passchier (1998);
W, maximum vorticity number for a triclinic flow system. « and @ represent
rotation angles of the vorticity vector (see text).

the vorticity vector moves away from one of the ISA, a Matlab
code (ScienceDirect script 1) was used to calculate eigenvec-
tor positions. We plotted the path traced by the eigenvector for
different flow parameters in stereograms (Figs. 7—10). This
was done for simple and general triclinic flow types in the
real domain range. Fig. 7 shows the distribution of the three

Table 1b
Threshold vorticity numbers defining the imaginary eigenvalue fields of exis-
tence in the case of volume change (a=0.7, b=—0.5; ; > 4, > 0> 43)

8 w W w;

0.1 0.58 0.96 0.96
0.2 0.56 0.93 0.94
03 0.53 0.88 0.90
0.4 0.50 0.83 0.86
0.5 0.48 0.80 0.84
0.6 0.45 0.75 0.80
0.7 0.43 0.73 0.79
0.8 0.41 0.68 0.78
0.9 039 0.65 0.77
1.0 0.38 0.63 0.79
1.1 037 0.61 0.81
1.2 036 0.60 0.83
1.3 035 0.58 0.89

Variables same as that of Table la.
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Table 1c
Threshold vorticity numbers defining the imaginary eigenvalue fields of exis-
tence in the case of volume change (a=0.7, b=—0.5; ;> 0> A, > A3

a w W w;

0.1 0.58 0.90 0.90
0.2 0.56 0.83 0.84
03 0.53 0.70 0.78
0.4 0.50 0.63 0.73
0.5 0.48 0.58 0.68
0.6 0.45 0.55 0.64
0.7 0.43 0.51 0.63
0.8 0.41 0.48 0.62
0.9 0.39 0.46 0.62
1.0 0.38 045 0.63
1.1 0.37 0.43 0.66
1.2 036 0.41 0.69
13 0.35 0.40 0.74

Variables same as that of Table la. o represent rotation angle of the vorticity
vector.

eigenvectors for a constant volume simple triclinic flow at
three fixed angles of triclinization (0.1, 0.2, 0.3 radians). Bold-
ness of the curve for each eigenvector indicates the magnitude
of the corresponding eigenvalue. In all examples the orienta-
tion of the eigenvectors changes from a monoclinic basis
situation for fixed flow parameters towards an angle of “tricli-
nization”’ that limits the field of real eigenvector behaviour. In
most examples the three eigenvalues are all real with two neg-
ative and one positive value so that the flow pattern has a sad-
dle shape (as in Fig. 5a). Some interesting conclusions can be
drawn from the examples (Figs 7a—c, 8a—f): a small deviation
of the vorticity vector from parallelism to one of the ISA in-
duces a non-symmetrical distribution of all eigenvectors with
respect to the ISA. As soon as the flow is “triclinized”, eigen-
vectors gradually move away from the planes of the ISA. If Wy
is changed at a fixed angle of “triclinization” until the eigen-
values assume real values (0—0.8), the possible deviation of
the principal eigenvectors from a monoclinic pattern is below
0.2 radians (see Fig. 7a—c). If for a specific W4 the orientation
of the vorticity vector is changed, the final obliquity and the

trace-length of eigenvector curves are strongly dependent on
the components of the vorticity (Fig. 8). In domains with
low kinematic vorticity numbers (Fig. 8a—c), the field of exis-
tence of real eigenvalues is larger than in domain with high
vorticity numbers (Fig. 8d—f). In both cases the maximum
positive eigenvalues (for o = 0, Fig. 8a) and/or minimum neg-
ative eigenvalues (for 8 =0, Fig. 8b) that control the flow pat-
tern for + — o, show a small deviation from the ISA of less
then 0.3 radians. For high vorticity numbers (~0.8) the ei-
genvalues have a limited field of existence (Fig. 8d—f) and
the extensional stable eigenvectors (Fig. 8d, e) show a limited
possible deviation from the ISA of between the 0.2 and 0.4
radians. Eigenvectors associated with the lowest eigenvalues
show the same attitude. Only the medium eigenvalues which
are relatively unimportant in controlling the flow pattern
show a strong variability (Fig. 8d—f). If we extend the analysis
to non-constant volume at different extrusion (7, or dilatancy
numbers (A,) this phenomenon is confirmed at both high
(Fig. 9) and low vorticity numbers (Fig. 10). Figs. 9 and 10
clearly show that the deviation of the maximum eigenvector
from an ISA position exceeds 0.3 radians only for very high
T, values (Fig. 9c, e and Fig. 10g, 1) and generally the maxi-
mum eigenvector develops along the extrusion direction. For
dilatant flow without (Fig. 10b, c) and with extrusion
(Fig. 9d, f and Fig. 10d, e, f, h, i, m, n) or at plane strain
(Figs. 8a, 9a and 10a), the maximum and minimum eigenvec-
tors are not easily recognizable since they deviate less than
0.1 radians from the ISA. The observations described above in-
dicate that the distribution of eigenvectors in simple triclinic
flow cannot strongly deviate from a monoclinic symmetry,
even if they are oblique to ISA and have a complicated geom-
etry. It is also shown that the field of existence is strongly con-
trolled by the kinematic vorticity number. These observations,
however, apply to simple triclinic flow. In the case of general
triclinic flow the eigenvectors show a significantly deviating
distribution under some circumstances (Fig. 8c, f). However,
even in these cases, eigenvalues adopt imaginary values at
high vorticity numbers (Table 1la—c).

(a) An=0 (b) ,.?: fg (c) An=0
Wd=0-0.8

Fig. 7. Change in flow eigenvector orientation as a function of a change in vorticity number (up to Wy < 0.8) for three simple triclinic flow types (a—c). The three
curves show the path of the eigenvectors. 3 represent rotation angle of the vorticity vector around b. Line thickness refers to the magnitude of the eigenvalues. The
deviation of the three eigenvectors with respect to monoclinic geometry cannot exceed 0.2 radians. Further discussion in text (Line colors in the web version refer
to the magnitude of the eigenvalues. Red, maximum eigenvalues; green, medium eigenvalue; blue, minimum eigenvalue).
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Simple triclinic flow
(a) An=0 (b) An=0
o =0 radians
B =0 -1.2 radians
Tn=0

W=0.5

Tn=0

a =0 -1.2 radians
B =0 radians

W=0.5

General triclinic Flow
(c) An=0
o =0-1.2 radians

f =0 -1.2 radians
Tn=0

W=0.5

(d) An=0
o =0 - 0.4 radians
p =0 radians
Tn=0
W=0.8

(e) An=0

Tn=0
W=0.8

o =0 radians
B =0 - 0.4 radians

(f) An=0
a=0 - 0.8 radians
=0 - 0.8 radians
Tn=0
W=0.8

Fig. 8. Change in flow eigenvector orientation as a function of change in orientation of the vorticity vector in an ISA reference system. Line thickness refers to the
magnitude of the eigenvalues (Line colors in the web version refer to the magnitude of the eigenvalues. « and 8 represent rotation angles of the vorticity vector (see
text). Red, maximum eigenvalues; green, medium eigenvalue; blue, minimum eigenvalue). (a)—(c) Vorticity number Wy = 0.5. (d)—(f) Vorticity number W4 = 0.8.
The maximum finite strain axis will tend to accumulate (for + — o0) at the thickest curve, which is the position of the attractor eigenvector.

6. Numerical approach

Although it is useful to know the position of eigenvectors in
a flow type, it is difficult to understand their meaning in terms
of flow patterns and progressive deformation, since it is not
clear how material lines rotate in space. A more intuitive
and practical way to understand the rotation of material lines
(even if less exact) is to reproduce the flow pattern by cal-
culating the displacement of particles with progressive defor-
mation. We calculated such displacement patterns for simple
triclinic flow using a Matlab code (ScienceDirect script 2).
In this simple simulation we assume an initial random distri-
bution of material points (defined by a Monte Carlo distribu-
tion) which are displaced by a deformation matrix. The
deformation matrix in this case is the first derivative of the
strain rate matrix as a first approximation of the deformation
path. The code links the position of each point to its position
in the next time step in order to recognize a first order flow
pattern, but also to define the distribution of the principal
attractor directions. To obtain a clear pattern with a clear

distribution of attractor directions it is enough to reapply the
strain matrix to the population of particles 4—5 times. As
the number of possible flow geometries is limitless we have
chosen some simple but supposedly realistic situations assum-
ing both area and volume change for different vorticity num-
bers between O and 1 and with different angular orientation
of the vorticity vector. Real eigenvector deformation paths
are plotted showing the attractor and repulsor axes for differ-
ent flow parameters. They represent the flow pattern of our dy-
namical system for the different flow parameters. The limit of
such a method is that imaginary eigenvectors cannot be repre-
sented by the program code.

In the first two rows of Fig. 11 some end-member mono-
clinic flow types are shown with different flow parameters.
These patterns are identical to those presented by Passchier
(1997) and we can use them as a basis for the interpretation
of relative weak triclinic patterns shown in the next two rows.

Flow in Fig. 11a, b, e and f, shows a flow pattern around
a saddle point in which one eigenvector (with the largest
eigenvalue) defines a repulsor from which points migrate
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Wd=0.8
0 0.5 0.7 1.0 An
0 seefig 3 no graphic no graphic no graphic
05 no graphic no graphic
0.7
no graphic no graphic
1.0 no graphic no graphic
Tn

Fig. 9. Change in flow eigenvector orientation as a function of change in orientation of the vorticity vector around a, in an ISA reference system for different flow
parameters in a simple triclinic flow (Line colors in the web version refer to the magnitude of the eigenvalues. Red, maximum eigenvalues; green, medium ei-
genvalue; blue, minimum eigenvalue). Line thickness refers to the magnitude of the eigenvalues. Vorticity number Wy = 0.8. «, Angle of rotation of the vorticity
vector around x. The maximum finite strain axis will tend to accumulate (for t — o) at the thickest curve, which is the position of the attractor eigenvector. The
black arrows indicate the direction of movement of the vorticity vector at different angles of triclinization.

away; whereas the eigenvector defined by the smallest nega-
tive eigenvalue is the attractor toward which points tend to mi-
grate. The third eigenvector, which can be positive or negative
depending on whether there is extrusion or not along the ¢
axis is normal to the other two in a stereogram. If we triclinize
the flow (Fig. 11c, d, g, h) the flow pattern still contains a sad-
dle axis but now the directions of the extruding attractors are
obliquely disposed and no longer parallel to ISA. The inter-
mediate eigenvector also moves away from the vertical giving
rise to movement within the be plane. Fig. 11i and 1 show
monoclinic examples with a flow pattern around a non-stable
axis. Flow is dilatant (A, = 1.5) with two different vorticity
values. The dilatancy implies positive eigenvalues and the
two eigenvectors are both unstable. Triclinization of this
flow (Fig. 11m, n) results in an asymmetric pattern defined
by three positive eigenvalues with a still recognizable princi-
pal direction (Fig. 1lm, n). The last two flow patterns

(Fig. 110, p) represent flow types that are ‘“‘simple shear con-
trolled”” flow with a high vorticity number. The two eigen-
values tend to assume similar values, with the same positive
(Fig. 110) or negative (Fig. 11p) sign. This last flow pattern
is characterised by negative dilatancy (A, <0), with a stable
positive eigenvector along which the points tend to accumu-
late. As shown earlier, there are no real flow patterns with
real eigenvectors for corresponding triclinic flow but the pat-
tern is expected to behave as a stable spiral (Iacopini et al.,
2006). The modelling presented in Fig. 11 shows that attractor
eigenvectors derived from the simulations do not deviate
much from those calculated analytically. This suggests that
even though this method is inaccurate and produces patterns
that are not identical to those described by an exact progres-
sive matrix, they are a good first approximation of the pro-
gressive deformation matrix (see also Tikoff and Fossen,
1993).
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Fig. 10. Change in flow eigenvector orientation as a function of change in orientation of the vorticity vector around a, in an ISA reference system for different flow
parameters in a simple triclinic flow (Line colors in the web version refer to the magnitude of the eigenvalues. Red, maximum eigenvalues; green, medium eigen-
value; blue, minimum eigenvalue). Line thickness refers to the magnitude of the eigenvalues. Vorticity number Wy = 0.5. Vorticity vector is rotated around a,
assuming different « values till the eigenvalues assume real number values. The maximum finite strain axis will tend to accumulate (for t — o) at the thickest curve,
which is the position of the attractor eigenvector. Where eigenvalues become imaginary, no diagram is shown. The black arrows indicate the direction of movement

of the vorticity vector at different angles of triclinization.

7. Progressive strain matrix, finite ellipsoid
and their geological meaning

So far we limited our analytical approach to the spatial dis-
tribution of the principal attractors and their change in orienta-
tion and properties with changing flow parameters, including
the rotation of material lines and/or the motion of single parti-
cles in flow and progressive deformation. This is useful but in-
sufficient to understand fabric accumulation in rocks. For that
purpose it is necessary to know how finite strain accumulates
with progressive deformation. For this reason we calculated
the developing strain ellipsoid in progressive deformation
and its relation with the eigenvectors for triclinic flow. In order

to derive the time dependent progressive strain matrix we
solved the differential equation according to the classical
method following Fossen and Tikoff (1993), Soto (1997), and
Jiang and Williams (1998). Because of the asymmetry and
complete initial form of the strain rate matrix defined in Eqgs.
(13), (14) and (15), the result is a rather complex matrix, a func-
tion of angles, angular velocity and strain elements. If the strain
matrix is defined by F; then the finite ellipsoid matrix is de-
fined by the Cauchy—Euler tensor Fj; x Ffj The eigenvectors
of this ellipsoid define the finite strain axes (FSA). Examples
of the distribution of finite strain ellipsoid principal axes
in a shear zone with triclinic flow were presented by Robin
and Cruden (1994), Jiang and Williams (1998), Czeck and
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Fig. 11. Flow patterns for different monoclinic and triclinic flow parameters.

Hudleston (2002) and Jones et al. (2004). These authors have
choose an external reference frame that was fixed with respect
to the shear zone boundaries and considered to be in a stable
position throughout the evolution of the system. This

configuration is useful to describe a pattern with respect to
physical boundaries but the assumption does not mathemati-
cally represent a rigorous fixed reference system (Passchier,
1986). In order to avoid this assumption we choose to plot
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Eigenflow as reference system

(b)

(d)

Monoclinic Flow

isa
90

Triclinic Flow : case A.

Fig. 12. (a)—(c) Path of the principal finite strain axes with progressive deformation at W; = 0.6. (a) 8 =0.1. (b) 8 =0.2. (c) 8 = 0.3. (d) Sketch of the finite strain
ellipsoid orientation in monoclinic flow at time 7 = 0 to = 100 in a flow eigenvector reference system. (e) Sketch of the finite strain ellipsoid orientation in triclinic
flow as in (a) at time t = 0 to t = 100 in a flow eigenvector reference system. Red line — main fabric attractor; yellow line — medium eigenvector; a, b, ¢ — ISA in web.

the finite strain axes with respect to the flow eigenvectors or
ISA and to present some simple examples for both situations.
Obviously, this complicates visualisation considerably since
shear zone boundaries in the system can deform in the chosen
reference frame. It is clear, however, that this setting gives rise
to finite strain axes patterns that are different from those shown
by the authors mentioned above. Nevertheless the two ap-
proaches are physically equivalent. Fig. 12 shows migration
of finite strain axes in a simple triclinic shear zone where the
vorticity vector lies in the be ISA plane at 0.1, 0.2 or 0.3 radians
(Fig. 12a—c) from the mean axis b as shown in Fig. 12d. This is
the same initial flow condition as shown in Fig. 11c, d and very
similar to the monoclinic flow condition shown in Figs. 11b and
12c. The direction of motion of the finite strain axes are shown
by arrows in the stereograms and their position for three differ-
ent triclinic situations at = 0,10, 20, 30, 40, 50 are given in
Table 2a, b, c. Fig. 12e represents the situation shown in the
stereogram in Fig. 12a at t =0, 10 and 100. At r =0 the prin-
cipal finite strain axis starts from the ISA direction and move
with progressive deformation towards the principal extensional
eigenvector. The other two strain axes rotate as well, with the
intermediate strain axis plunging in the same direction as the
second eigenvector, but never coinciding since flow eigenvec-
tors are not orthogonal in this case. It can be demonstrated
(Tacopini, 2005) that the principal strain axis (X)) is always con-
trolled by the principal attractor and this implies that the XY
finite strain plane, if it exists, will tend to rotate toward the prin-
cipal eigenflow plane (see also Hobbs et al., 1982). This gives
rise to an oblique distribution of the finite strain axes with
respect to the ISA (Fig. 12e).

8. Discussion
8.1. Potential application

In the previous sections we have shown how the pattern of
flow eigenvectors and notably the attractors in the real number
domain control both the distribution of material lines and finite
strain axes in a general flow system. In a homogeneous contin-
uum, strain axes can define a linear and planar shape fabric.
This has been shown both analytically (Ramberg, 1974;
Soto, 1997; Passchier, 1998; Iacopini, 2005) and experimen-
tally for analogue materials (Piazolo et al., 2000). Such fabric
growth with progressive deformation is not obvious when two
eigenvectors are imaginary since the flow pattern will cause
pulsating strengthening—weakening fabric development that
will hamper or inhibit the development of a stable fabric.

If the assumption of constant flow parameters is relaxed and
flow parameters can change in the course of time, albeit in
constant volume deformation, ‘linear attractors’ could still
be defined during the progressive deformation history (Tabor,
1989). In this case the mathematical considerations developed
above would still predict the fabric distribution. In the case of
in homogeneous flow the kinematic frame becomes more com-
plicated. If we adapt a model in which the strain is defined by
a continuous gradient (Fig. 13a; Ingles, 1983; Robin and
Cruden, 1994; Jones et al., 2004) the following statements
can be made:

a) some authors (Treagus and Lisle, 1997) demonstrated that
in steady state 2D and 3D situations that are controlled by
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Table 2

Finite strain axis orientation in an ISA reference frame, labelled in radians, at t =0, 10, 20, 30, 40, 50

Shear example a

Shear example b

Shear example ¢

0.99999, 0.00196, 0.00000;
0.00000,-0.0003,1.00000;
-0.00196, 0.9999, 0.00039;

0.99980; 0.0195; —0.00007;
0.00000,-0.0039,—0.99 %92
—0.01958, 0.9998,-0.00 397,

0.98357; 0.1803:-0.00711;
0.00000;-00394; 0.99922;
—0.18049; 0.9828; 0.03876;

0.90974; 0.4095; 0.06824;
0.00093; -0.1663; 0.98605;
—0.41517; 0.8969; 0.15176;

0.90032; 0.4221; 0.10600;
0.03110,-03055; 0.95168;
—0.43411; 0.8535; 0.28818;

0.90032; 0.4422; 0.10608;
—0.41883; 0.9065; 0.05244;
0.0027; —0.1183; 0.99297

0.99998; 0.01910; 0.00000;

0.00000;-0.00591; 1.00000;
0.00191;-0.99999; —0.00059;

0.99982; 0.01861; 0.00010;
0.00000; —0.00576; 0.99998;
0.01861; —0.99981; —0.00576;

0.98517; 0.17128; 0.00975;
0.00000; —0.05706;, 0.99837;
0.17156; —0.98356; -0.05622;

0.92033; 0.38065; 0.08996;
0.00250,-0.23574; 0.97181;
0.39113;-0.89416,-0.21795;

0.91325; 0.38610; 0.12993;
0.17271,-0.65582; 0.73488;
0.36896; -0.64870,~0.66562;

0.91324; 0.38610; 0.12993;
0.40432;-0.89807; 0.17313;
0.04988;-0.21065:-0.97628:

0.99998; 0.00198; 0.0000;
0.00000;-0.00198; 1.0000;
~0.00198; 0.99998; 0.0000;

0.99980; 0.01988; 0.0000;
0.00000; -0.00199; 0.9999;
—0.01988; 0.99980; 0.0001;

0.98306; 0.18322; 0.0003;
0.00000; —0.01981; 0.9998;
~0.18325; 0.98287 0.0194;

0.90620; 0.42134; 0.0355;
0.00012;-0.08430; 0.9964;
-0.42284; 0.90272; 0.0764;

0.89642; 0.4400; 0.0526;
0.00071;-0.1201; 0.9927;
—0.44319; 0.8898; 0.1079;

0.89591; 0.4404; 0.0577;
0.00127,-0.1326; 0.9911;

-0.44422; 0.8879; 0.1194

heterogeneous deformation, principal stress and strain sur-
faces do not necessarily exist, and this possibly also ap-
plies to incremental strain in homogeneous 3D flow; and
b) on the other hand a “pseudo-plane” (sensu Treagus and
Lisle, 1997) and lineation exist in such cases and this

(a)/ »—
Ll =
A W ==

,——4

“pseudo-plane’” does not change orientation in a randomly
way but is controlled by a stable direction in steady state
deformation such as that of an attractor (Treagus and Lisle,
1997). Therefore, the finite strain ellipsoid will move to-
wards the “local’ attractor directions, the orientation of

Fabric attractor meshes

(b) == —
- 7 _'ﬂ

=

Heterogeneous
Monoclinic symmetry

S

modified from Hudleston (1999)

oz

Fig. 13. (a) Example of a heterogeneous shear zone defined by a continuous strain gradient. The shear zones can be characterised by the trend of attractors defining
an attractor mesh. If the gradient can be defined as a continuous function the distribution of the main flow eigenvector can be predicted (in the web version: red
lines, main attractors; blue lines, main repulsors). (b) Example of a shear zone network surrounding domains of low strain (in the web version: blue ellipses, finite

strain ellipsoids). Black arrows, shear sense movement.
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which may vary laterally. In this heterogeneous context,
following Passchier (1997), it is more realistic to speak
of attractor meshes (Fig. 13a). This means that finite strain
axes can define a lineation and foliation plane (provided
they exist, Treagus and Lisle, 1997) at high strain in all
types of steady state flow. If so the following conclusions
can be drawn from our modelling work:

(1) In Figs. 7 (a—c), 8 (a—f), 9 (a—f) and 10 (a—f) bold
curves indicate the orientation of the principal
stretching attractor eigenvector with respect to the
ISA. For high strain accumulation this attractor
will be the line towards which the X-axis of finite
strain, and therefore the stretching lineation, will
converge. We have seen in the simple triclinic flow
examples given above that the stretching lineation
has a space variability and deviation from the ISA
plane ranging between 0 and 0.4 radians. This means
that it can deviate over a range of 20° from ISA ori-
entations, and this is the true deviation from the ini-
tial monoclinic situation in any reference system. In
order to define the XY plane of finite strain (if it ex-
ists), it is necessary to see how both eigenvectors that
can act as attractors are oriented. It was shown above
that the Y finite strain axis has a plunge that is similar
to the direction of the second eigenvector. The orien-
tation of the XY plane is therefore controlled between
the ISA and the flow eigenvector system has a similar
orientation range as the lineation. For non-extruding
systems in shear zones with a high vorticity number,
a small deviation from monoclinic flow (less than
10°) produces stretching lineations and foliation
planes that also deviate less than 10° from a mono-
clinic geometry (Fig. 7). For shear zones with a
significant pure shear component (low vorticity num-
ber) the fabric can deviate up to 20° from monoclinic
symmetry. Similar results for low angles of triclini-
zation were obtained, in a different reference system,
by Jiang and Williams (1997 — in their paper defined
as ¢ <20° and high ©).

(2) Inhigh strain shear zones (with high vorticity numbers)
simple triclinic flow can be expected only if the system
is strongly extruding along a principal direction.

(3) In isotropic rocks, ISA can be close in orientation to
principal stress axes (Weijermars, 1991; Regenauer-
Lieb and Yuen, 2004). In this case, the orientation of
the vorticity vector is strongly controlled by the in-
termediate stress axis (parallel to one of the ISA).

This implies that the flow geometry in a homogeneous me-
dium will be monoclinic (Passchier, 1997) or a “weak’ simple
triclinic flow. This suggests that even if general triclinic flow
could theoretically develop, triclinic fabric geometry should
be very rare in high strain shear zones that are strongly con-
trolled by the stress field. We think that high strain zones
which operated by high vorticity numbers in isotropic medium
are most likely dominated by monoclinic flow or simple

triclinic flow with a symmetry that is close to monoclinic.
To better constrain such considerations, the effect of applied
stress on the flow symmetry distribution within real high strain
shear zones should be further investigated (Fletcher and
Pollard, 1999).

8.2. Limits of the homogeneous model

Although homogeneous flow is a simple and useful mathe-
matical assumption, flow in most natural situations is not only
inhomogeneous but also strongly partitioned. In fact several
field examples suggest that ductile shear zones nucleate on or
directly overprint previous anisotropies (e.g. an existing folia-
tion, Carreras, 2001). Alternatively, ductile shear zones may
overprint a brittle fracture system, evolving to a network of
widening coalesced mylonitic shear zones (Passchier, 1984;
Mancktelow and Pennacchioni, 2005; Fusseis et al., 2006). In
both cases shear zones represent localisation of strain where
a homogeneous model cannot be applied for the entire defor-
mation history. In these settings the analytical prediction of
a mesoscopic fabric is complicated since the strain rate matrix
is both time and space dependent. However, the following qual-
itative considerations can help to suggest possible scenarios:

(1) After a large amount of strain accumulation, a dense net-
work of mylonitic shear zones could form, separating low
strain domains (Fig. 13b). In this case the assumption of
continuous flow and a steady state deformation history
does not apply and this limits the application of the kine-
matic model proposed. Each shear zone segment in the
network may be characterised by different strain accumu-
lation and may have a different orientation of the vorticity
vector (inset in Fig. 13b), leading to a different local fab-
ric. The result will be a complex fabric geometry, even if
flow in individual shear zone segments was monoclinic. In
this setting the effect of heterogeneity could be far more
important then a flow symmetry effect such as triclinic
versus monoclinic flow. Supposed triclinic shear zones
should be analysed for this effect.

(2) Likely places where triclinic flow may be important are
anisotropic rocks and/or high grade deformed rocks obli-
que to the stress field, in March-fixed or March rotating
rocks with medium-low vorticity component (sensu
March, 1932; Tikoff and Teyssier, 1994). Another possi-
bility is magma flow between deformable wall rocks (as-
suming a Jeffery Model; Tikoff and Teyssier, 1994;
Czeck and Hudleston, 2002) inducing a strong extruding
component. Detailed analysis of the fabric distribution in
such extruding systems could help to test and unravel pos-
sible triclinic models.

9. Conclusions

(1) Flow eigenvectors can act as attractors of material points
and lines in monoclinic and triclinic flow types. Such at-
tractors can also act as barriers for finite strain axes. As
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a consequence linear and planar shape fabrics tend to ro-
tate toward the attractor eigenvector orientation in space.

(2) Flow eigenvectors and thus attractors, only act as barriers if
corresponding eigenvalues are real. In 3D, even the imag-
inary field always has one real eigenvalue and depending
on its relative dominance it could cause deviation of the
shape fabric geometry from well-known 2D patterns.

(3) For many triclinic flow types, especially at high vorticity
number (as in high strain shear zones) eigenvalues are
imaginary numbers. This implies that no stable deforma-
tion fabric can accumulate in such flow types. Triclinic
flow with developing shape fabrics can only exist if *“tri-
clinicity” is limited, e.g. if the angle between the vorticity
vector and ISA is small or if the system is extruding. This
is particularly valid at high vorticity numbers.

(4) Realistic fabric forming triclinic flow patterns within vol-
ume constant deformation can only form fabrics that lie up
to 20° from the orientation expected from monoclinic flow.
It is questionable if such triclinic flow histories can be rec-
ognised in nature.
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